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A three-dimensional (3-D) Monte Carlo model is developed for predicting electrical conductivity of
polymer matrix composites filled with conductive curved fibers. The conductive fillers are modeled
as a 3-D network of finite sites that are randomly positioned. The percolation behavior of the
network is studied using the Monte Carlo method, which leads to the determination of the critical
fiber volume fraction (or the percolation threshold). The effect of fiber curliness on the percolation
behavior is incorporated in the current model by using 3-D arm-shaped fibers, each of which needs
five independent geometrical parameters (i.e., three coordinates for its vertex and two orientation
angles) for its identification. There are three controlling parameters for such fibers, namely the fiber
arm length, the fiber aspect ratio, and the fiber arm angle. The new model also considers the sample
size and scaling effects. The simulation results reveal an exponential relationship between the fiber
aspect ratio and the percolation threshold: the higher the aspect ratio, the lower the threshold. It is
also found that the curliness largely influences the percolation threshold: the more curved the fiber,
the higher the threshold. However, the effect of curliness diminishes with the increase of the fiber
aspect ratio. With the percolation threshold obtained from the Monte Carlo model, the effective
electrical conductivity of the composite is then determined by applying the theory of percolation.
The numerical results indicate that the composite conductivity decreases as the fibers become more
curved and as the fiber aspect ratio decreases. These predicted trends of the percolation threshold
and composite conductivity are in good agreement with existing experimental and simulation
results.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Electrically conductive polymer matrix composites (PMCs) filled
with conductive particles or fibers are finding important applica-
tions in aerospace and other industries. For example, PMCs rein-
forced by nickel nanostrands, which are pure nickel filaments with
nanometer diameters and high aspect ratios, are very promising
nanocomposites that can reduce lightning strike damage with
minimum added weight [15,19]. Experimental studies have
revealed the existence of an insulator-to-conductor transition in
such a composite around a critical threshold as the volume fraction
of conductive fillers (f) increases [5]. That is, there is a sharp onset
of high electrical conductivity (s) at a critical fiber volume fraction
(fc) (see Fig. 1).

Percolation theory has been widely used to describe this tran-
sition [14,27,11]. In the theory of site percolation, conductive fillers
All rights reserved.
in a composite are modeled as a two-dimensional (2-D) or three-
dimensional (3-D) network of sites, which are regularly or
randomly located in the composite system. The connection
between each two neighboring sites may be open (allowing the
current through) with probability p, or closed with probability
1� p. It has been found that there exists a critical probability pc

(a threshold value) above which a continuous pathway will always
be present in the system. Studies on electrical conductivity of
composites have been mainly focused on investigating the perco-
lation threshold in order to understand the sharp change in
conductivity near the insulator–conductor transition [21,7]. Exact
solutions to percolation problems have been obtained only for
a few special cases [10,22], while approximate approaches, such as
the Monte Carlo method, are necessitated for other cases.

In the Monte Carlo method, the topological disorder in
a random microstructure is directly captured, and the percolation
behavior is effectively simulated using advanced computational
algorithms. The earliest use of the Monte Carlo method in solving
percolation problems was made by Pike and Seager [27], who
carried out a 2-D study on composites filled by straight sticks. In
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Fig. 2. System with randomly distributed arm-shaped fibers.
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Fig. 1. Conductivity depending on the filler volume fraction.
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their work, the sticks were assumed to be of equal length but no
width. Balberg and Binenbaum [2] extended Pike and Seager’s
work by accounting for the macroscopic anisotropy induced by
sticks with preferred orientation and/or unequal length. More
recently, the width of sticks was taken into consideration by
Natsuki et al. [23] in their Monte Carlo simulation of 2-D stick
(short-fiber) networks, where the dependence of the percolation
threshold on the fiber aspect ratio and orientation angle was
studied.

The Monte Carlo method has also been used to investigate 3-D
percolation problems. The first 3-D Monte Carlo study on
percolation behavior of systems consisting of randomly oriented
sticks (capped cylinders) in the 3-D space was conducted by
Balberg et al. [4], in which the effects of the stick aspect ratio and
macroscopic anisotropy were explored. The in-plane electrical
conductivity of a 3-D composite reinforced by straight short
fibers was studied by Taya and Ueda [29] using the Monte Carlo
approach developed in Balberg et al. [4] and an effective medium
method. The 3-D Monte Carlo simulations by Lee and Kim [16]
were performed for unidirectional short-fiber reinforced
composites, where the fiber orientation was predetermined and
only the fiber aspect ratio, fiber volume fraction and fiber length
distribution were allowed to change. Clearly, the last two studies
reviewed above did not account for the full randomness of 3-D
composite systems due to the restrictive conditions employed by
the authors. In addition, these and most of other works on
percolation behavior of composites have been confined to
composites filled with straight fibers. Since some filler materials
such as nickel nanostrands used to fabricate conductive polymer
matrix composites are highly flexible due to their very large
aspect ratios [15,19], the conductivity of such a composite system
will certainly be different from that of a composite embedded
with only straight fibers.

Very limited attention has been paid to the effects of fiber
curliness and entanglement on the percolation behavior of
fibrous composites. It has been reported by Yi et al. [31] that the
percolation threshold significantly increases with increasing
waviness of sinusoid-shaped fibers. Very recently, a general
continuum percolation model was developed by Li and Chou [18]
for composites filled with curved fibers of arbitrary shape. But
these two studies were devoted to 2-D fiber networks. Dalmas
et al. [8] simulated 3-D entangled fibrous networks using spline-
shaped fibers. They found that increasing fiber tortuosity leads to
an increased percolation threshold and the effect of the fiber
tortuosity is larger if the fiber aspect ratio is higher. However, the
effect of the fiber width (nanotube diameter) was not explicitly
studied in their 3-D simulations. Therefore, there is still a need to
develop 3-D Monte Carlo models that account for the effects of
fiber aspect ratio, fiber curliness and fiber width on the perco-
lation behavior of composites.

The objective of this paper is to provide such a percolation
model by using randomly distributed and oriented 3-D arm-shaped
fibers, which provide a first approximation to actual, curved filler
materials such as nickel nanostrands. The rest of the paper is
organized as follows. In Section 2, the 3-D Monte Carlo model is
formulated analytically. Sample numerical results are presented in
Section 3 to illustrate the newly developed model. A summary is
provided in the fourth and last section.
2. Formulation

Two steps are involved in developing the Monte Carlo model
presented here. In the first step, arm-shaped fibers with randomly
located vertices and random orientations are generated. Since the
main objective of this study is to determine the filler volume
fraction at the onset of high electrical conductivity, a non-dimen-
sionalized unit cube will be used, as was done in other studies on
percolation problems [4,23]. In the second step, a bonding
(connection) criterion is applied to check the connectivity between
each pair of fibers in the cube (composite system). The connected
fibers will form a continuous cluster and may lead to a pathway.
The details of these two steps are described below.
2.1. Model generation

To generate the composite system with randomly distributed
fibers, the sites, as the vertices of arm-shaped fibers, are first placed
inside a unit cube using their coordinates that are randomly
generated (see below). Then, each site is attached with an arm-
shaped fiber having two arms separated by angle g, as shown in
Fig. 2. The two arms are assumed to have the same length L and
diameter D. Another three independent angles, ai

1, ai
2 and qi

1 (see
Fig. 3), which are needed to determine the orientation of the ith
3-D arm-shaped fiber, are also generated randomly (see below). All
the arm-shaped fibers in the system are taken to be identical
(i.e., having the same arm length, diameter and arm angle). But they
are randomly distributed and oriented. With g being adjustable, the
3-D arm-shaped fiber model proposed here is expected to provide
a good first approximation to curved fibers.

To generate numbers with sufficient randomness, the multipli-
cative congruential (MC) generator is adopted, which is the most
common computer technique for producing random sequences [1].
The implementation details of this generator can be found in Park
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and Miller [26]. To avoid the patterned lattice effect, which can
arise when long runs (such as 5000 numbers long) are generated
by the MC generator and can undermine the randomness of
the sequences [1], the MC generator is called once to generate all
information needed to identify an arm-shaped fiber (i.e., three
coordinates for the fiber vertex and three independent angles, ai

1,
ai

2 andqi
1, for the fiber orientation of the ith fiber, as will be dis-

cussed below). That is, six random numbers ranging from 0 to 1 are
generated by using the MC generator once. The site coordinates are
given by the first three random numbers, while the orientation
angles are obtained from the other three random numbers. As an
example, a resulting system with 400 randomly distributed and
oriented arm-shaped fibers is shown in Fig. 2.

2.2. Connection criterion

For an arm-shaped fiber in the system, the coordinates (x, y, z) of
any point on the axis of the ith fiber whose vertex (central point) is
located at C (xi, yi, zi) can be represented by (see Fig. 3)
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where tð˛½0; L Þ� is the distance from C to the point of interest, ai
1

(˛[0,180�]), qi
1 (˛[0, 360�]) are the orientation angles for one arm,

and ai
2 (˛[0,180�]), qi

2 (˛[0,360�]) are the orientation angles for the
other arm. There is a constraint among these four orientation
angles, since the angle between the two arms is predetermined.
The constraint is (see Fig. 4)

d ¼ 2L sin
g

2
; (2)

where d is the distance between the two centers of the end sections
of the arm-shaped fiber whose coordinates are given by Eq. (1) with
t¼ L. That is,
d ¼ L
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Using Eq. (3) in Eq. (2) then yields, after simplifying,
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(4)

as the constraint. Accordingly, only three of the four orientation
angles are independent. Here ai

1, ai
2 and qi

1 are chosen to be the
three independent orientation angles for the ith fiber with the
vertex (xi, yi, zi), whose values will be produced using the random
number generator MC mentioned earlier. The value of qi

2 can then
be determined from Eq. (4).

Percolation occurs in the composite system if a continuous
conducting pathway along any one or all of the three coordinate
axes can be identified. To evaluate the status of the system
generated above, each fiber in the system is checked against
another to see whether they intersect. In the current study, the
connectivity between the ith and jth fibers is determined by
comparing the shortest distance between their axes with the
fiber diameter.

Similar to those equations given in Eq. (1) for the ith fiber, the
equations for the axis of the jth arm-shaped fiber in the system can
be expressed in a vector-parametric form as
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where sð˛½0; L Þ� is the distance from the central point of the jth
fiber. The square of the distance between any two points respec-
tively on the axes of the ith and jth fibers, F, can then be obtained
from Eqs. (1) and (5) as

F ¼ u,u; (6)
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where
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is the distance vector between the two points (see Fig. 5), with ei

(i¼ 1, 2, 3) being the unit base vectors for the Cartesian coordinate
system shown in Fig. 3.
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Using Eq. (7) in Eq. (6) then gives
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From Eq. (8), it is seen that F is a function of two variables, s and
t. To find the minimum value of F, it is necessary that, using Eq. (8),

vF
vt
¼ 2t þ C1 þ C2s ¼ 0;

vF
vs
¼ 2sþ C3 þ C2t ¼ 0: (10a,b)

Solving Eq. (10a,b) simultaneously gives
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which defines the critical point (t0, s0) of F(t, s). For F(t0, s0) to be the
minimum of F(t, s), it is further required that
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Fig. 5. Distance between the axes of the ith and jth fibers.
From Eq. (8) it follows that

v2F
vt2 ¼ 2 > 0;
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�
 

v2F
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¼ 4� C2
2 > 0: (13a,b)

Eq. (13b) holds as long as the two fibers are not parallel to each
other (i.e., ai

msaj
n, qi

msqj
n) (see Appendix A for a proof). Eq. (13a,b)

indicate that the conditions listed in Eq. (12) are satisfied by any
pair of (t, s) involved in Eq. (8) for two fibers that are not parallel.
Hence, F does have the minimum value when t¼ t0 and s¼ s0.

Substituting Eq. (11) into Eq. (8) gives the minimum distance
between the axes of the ith and jth fibers as
If dmin�D with 0� t0� L and 0� s0� L, then the ith and jth fibers
are considered as connected. This type of connection is called the
body-to-body connection (see Fig. 6(a)). Note that this connection
criterion has also been used in other existing percolation models
[24,23]. Meeting the criterion of dmin�D by each pair of fibers will
certainly result in a continuous conducting network. Hence, this
criterion can be viewed as a sufficient condition for forming
a conductive pathway, while it may not be a necessary condition
because of the existence of the tunneling effect. Indeed, tunneling
between isolated fibers can be important, since it might take place
before the percolation threshold is reached and could significantly
contribute to the electrical conduction of a polymer matrix
composite filled with conductive fibers [20,30], which is in addition
to the conduction due to percolation in a continuous conducting
network formed by connected fibers. Fortunately, it has been found
[30] that a tunneling (non-continuous conducting) network, which
is electrically connected but geometrically separated, existing in
a composite can also be well described using the percolation theory
for two-phase composites filled by conductive fibers that form
a continuous conducting network. Hence, the tunneling effect will
not be treated separately in the current study, and the above-
mentioned connection criterion will be applied in all cases.

There are two other connection patterns in which two fibers do
not satisfy the above condition but are still connected. These are
known as the end-to-end and end-to-body connections [24], as
shown in Fig. 6(b) and (c), respectively. In the end-to-end
connection, where t0> L and s0> L, the connection criterion is that
the distance between the centers of the end circles of two fibers is
not larger than D (see Fig. 6(b)). Similarly, in the end-to-body
connection, where t0> L or s0> L, two fibers are regarded as con-
nected if the distance between the center of the end circle of one
a b c

Fig. 6. Three patterns of fiber connections. (a) Body-to-body. (b) End-to-end. (c) End-
to-body.
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fiber and the central line of another fiber is not larger than D (see
Fig. 6(c)).

As discussed above and shown in Fig. 6, dmin�D is only the
necessary condition for all three patterns (i.e., body-to-body, end-
to-end, and end-to-body) of connection. The connectivity of two
fibers also depends on the values of t0 and s0 relative to L. In
addition, if the point of intersection of two fibers is outside the
sample (cube), then the two fibers are not considered as connected
even if 0� t0� L and 0� s0� L.

The end-to-end and end-to-body connecting patterns are more
time consuming to model than the body-to-body connection in the
Monte Carlo simulations because of the open ranges for t0 and/or s0

(i.e., t0> L and/or s0> L for the former as opposed to 0� t0� L and
0� s0� L for the latter). The fraction of the number of these two
types of connections to the number of total connections among all
fibers in the system is examined. It is found that this fraction
drastically decreases with the increase of the fiber aspect ratio, as
shown in Fig. 7. It is about 6% as the fiber aspect ratio reaches 24.
Simulations incorporating the two end connections and the ones
without them are performed for fibers having an aspect ratio of 24.
The difference in the critical fiber volume fraction between these
two sets of simulation results is found to be negligibly small (less
than 2%). Therefore, for the sake of computational efficiency, the
effects of the end-to-end and end-to-body connections are
neglected for fibers with an aspect ratio greater than 24.

2.3. Computational implementation

Each fiber is assigned a fiber number and a cluster number
when the generation procedure is completed. The fiber number and
the cluster number are equal and range from 1 through N, where N
is the total number of arm-shaped fibers in the system. Then, each
fiber is checked for connection with other fibers whose fiber
numbers are larger than its fiber number. For example, the ith fiber
will be checked against the (iþ 1)th through the Nth fibers. If two
fibers satisfy the connection criterion, they will be assigned
a common cluster number which is the smaller one of the two fiber
numbers. As a result, all fibers within the same cluster have the
same cluster number, and two clusters are given the same cluster
number if they have a common fiber.

If any two fibers in opposite boundary regions have the same
cluster number, then it can be concluded that the system is
percolated in the direction perpendicular to the two opposing
bounding surfaces [27]. For example, a percolating cluster along the
vertical direction is clearly seen for the system schematically shown
in Fig. 8. When the first percolating cluster is found, the system is
said to be in the critical state where the critical fiber volume frac-
tion has been reached.

3. Results and discussion

In the new percolation model developed in the preceding
section, there are three controlling parameters for a given system
(a unit cube): the fiber arm length L, the fiber aspect ratio a, and the
fiber arm angle g, which are all predetermined. The percolation
threshold depends on these specified parameters.

For a given set of the values of the three controlling parameters,
the number of fibers in the system, N, will be increased in small
increments (with the random number generator reset for each
increment) until the first cluster connecting the top and bottom
surfaces of the cube is identified, which corresponds to one critical
value of the fiber volume fraction.

3.1. Sample size effect

The sample size must be adequately specified in order to obtain
accurate results. To determine the adequate sample size, the aver-
ages and the standard deviations of the critical fiber number (Nc)
for sampling with 5, 10, 15, 20, 30, 40, 50 units, respectively, are
obtained and shown in Fig. 9. Note that Nc is directly related to the
critical fiber volume fraction fc through fc¼pD2LNc/2. For all of the
cases illustrated in Fig. 9, the fiber arm length and arm angle are,
respectively, fixed to be L¼ 0.12 and g¼ 180�, and the fiber aspect
ratio a, which is defined to be 2L/D, is taken to be 24.

It is seen from Fig. 9 that the averages and the deviations tend to
stabilize as the sampling units become greater than 15. This indi-
cates that the best computational efficiency is achieved when the
sample size is 15. For the cases with a¼ 12.5 and 100, respectively,
similar statistical analyses are performed, which leads to the same
conclusion. Therefore, a sample containing 15 sampling units is
selected for all simulations. Furthermore, the initial fiber number is
adjusted so that the standard deviations of the results in all simu-
lations are less than 5%.

3.2. Scaling effect

The finite-size effect is an issue that has to be addressed in all
Monte Carlo simulations [28]. The percolation threshold, by defi-
nition, is the critical fiber volume fraction at which an infinitely
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large cluster of connecting fibers is found in an infinite composite
system [28]. However, simulated systems are always finite. There-
fore, percolation thresholds obtained from Monte Carlo simulations
of finite systems need to be extrapolated before they can be used to
predict asymptotic thresholds of infinitely large systems.

Following Stauffer [28], the relationship between the percola-
tion threshold for a finite-size system, PC, and that for an infinitely
large system, PN, can be written as

PC � PNfC�1=v; (15)

where C is a characteristic size of the system being simulated, and
v is a correlation length exponent.

As mentioned earlier, the simulation box is a cube having a non-
dimensional unit side length (i.e., x ˛ ½0;1 ; y ˛ ½0;1 ; z ˛ ½0;1��� in the
system), and the size of each fiber in the simulated system is non-
dimensionalized by the system size. Thus, the fiber arm length L is
inversely proportional to the system size represented by C, and Eq.
(15) becomes

PC � PNfL1=v: (16)

Based on Eq. (16), extrapolating the results obtained for a finite
system with varying fiber arm length will lead to the threshold for
the infinitely large system. Levinshtein et al. [17] conducted thou-
sands of simulations for variously sized lattices to obtain v ¼ 0:9�
0:05 for 3-D lattices. Boissonade et al. [6] found v ¼ 0:875� 0:03
based on their Monte Carlo simulations of 3-D lattices. Dani and
Ogale [9] concluded that v ¼ 0:89 by using their model for cylin-
drical fibers. Based on these studies, v is taken to be 0.9 in the
current analysis. Then, Eq. (16) becomes

PC � PNfL1=0:9: (17)

To compare with existing experimental results of Bigg [5] for
composites filled with straight fibers, the fiber arm angle, g, is set to
be 180�. The fiber aspect ratio, a (¼2L/D), is, respectively, taken to
be 24 and 12.5, which is the same as that used in Bigg [5]. The third
controlling parameter, the arm length L, is allowed to have different
values. The Monte Carlo simulations are then conducted for the
values of the controlling parameters identified above, and the
simulation results of the critical fiber volume fraction (fc) versus
the fiber arm length (L) are displayed in Figs. 10 and 11 for the two
fixed values of a¼ 24 and 12.5, respectively. For each of these two
cases, it is seen from Figs. 10 and 11 that the discrete numerical
results can be fitted as a straight line, indicating fc as a linear
function of L1/0.9. By extrapolating the straight line to the vertical
axis, where the length of the fiber approaches zero or the system
size goes to infinity, the intercept gives the critical fiber volume
fraction for the infinitely large system as 8.0% and 16.5%,
respectively, for a¼ 24 and 12.5, as shown in Figs. 10 and 11. This
compares fairly well with Bigg’s experimental results of 6% for
a¼ 24 and 11% for a¼ 12.5, considering the approximate nature of
the Monte Carlo simulations and the possible scattering of the
above-mentioned experimental data. The latter were given as two
single values (rather than as averages and deviations or error bars)
in Bigg [5] using aluminum fiber filled polymer (polypropylene)
matrix composite specimens of finite dimensions.
3.3. Fiber aspect ratio effect

The effect of the aspect ratio on the percolation threshold is very
important. It is found in the experimental study of Bigg [5] that for
3-D composites reinforced by straight short fibers the critical fiber
volume fraction is strongly dependent on this parameter. The
higher the fiber aspect ratio is, the lower the critical fiber volume
fraction is required to induce electrical conductivity. It was revealed
in the 2-D Monte Carlo study of Natsuki et al. [23] that the perco-
lation threshold has a linear dependence on the fiber aspect ratio in
a log–log plot when the aspect ratio is greater than 40.

In the current study, the effects of the fiber curliness and aspect
ratio are investigated separately. A straight fiber is first simulated to
exclude the effect of the fiber shape. The results for straight fibers
(i.e., g¼ 180�) with a increasing from 12.5 to 100 are listed in
Table 1 and illustrated in Fig. 12, where the scaling effect discussed
in Section 3.2 has been eliminated.

From Fig. 12, it is seen that a linear relationship exists between
ln a and ln(fc). The slope of the straight line in Fig. 12, k, found
through curve fitting is �1.14, which means that fc is proportional
to a�1.14. That is, fc decreases exponentially with the increase of a,
as was experimentally observed by Bigg [5]. The exponential
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Table 1
fc for straight fibers with various values of a

a fc (%) a fc (%)

12.5 16.5 50 4.0
20 11.2 60 3.0
24 8.0 80 2.0
40 5.3 100 1.6
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relation found here also agrees with that reported by Foygel et al.
[12], which showed that fc f a�1.0 (see their Fig. 4) for carbon
nanotube reinforced composites.

3.4. Fiber arm angle effect

The curliness of fibers has a great influence on the percolation
threshold, as was shown by Yi et al. [31] in their study involving 2-D
curly fibers of sinusoidal, triangular and rectangular shapes. In the
current study, the fiber arm angle, g (see Fig. 4), is used to represent
the curliness of the fiber. The closer to 180� the arm angle is, the
more the fiber is like a straight fiber, and hence the smaller the fiber
curliness is. The fiber reaches its largest curliness when the arm
angle approaches 0.

The simulation results for fibers with aspect ratios of 12.5, 24, 50
and 100 are plotted in Fig. 13, where the scaling effect discussed in
Section 3.2 has already been eliminated. Fig. 13 shows that for all
these four types of fibers, the critical fiber volume fraction
decreases as the arm angle increases (i.e., as the fiber becomes less
curved). It is also seen that the critical fiber volume fraction curves
get more flat when the aspect ratio increases. For a¼ 50, the fc(g)
curve is almost flat. This indicates that the effect of the fiber
curliness on the critical fiber volume fraction is more significant for
fibers with lower aspect ratios. When the aspect ratio is greater
than 50, the fc(g) curve is seen to be even more flat (see Fig. 13 for
the case with a¼ 100). That is, the critical volume fraction becomes
virtually independent of the fiber curliness when a� 50 for the
system considered.

The logarithmic relations of the critical fiber volume fraction
versus the fiber aspect ratio are plotted in Fig. 14 for fibers with an
arm angle of 30�, 90�, 180�, respectively. The straight lines in Fig. 14
are seen to fit well with the data for different types of fibers, which
means that the exponential relation between the critical fiber
volume fraction and the aspect ratio observed for the straight fibers
(with g¼ 180�) in Section 3.3 and from Fig. 14 also holds for all of
the curved fibers considered. That is, the critical fiber volume
fraction decreases exponentially with increasing fiber aspect ratio
for the fibers with different curliness.

3.5. Electrical conductivity

According to the percolation theory [14,3,28,25,13,19], the
effective electrical conductivity of a composite, se, can be obtained as
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Fig. 12. Critical fiber volume fraction versus the fiber aspect ratio.
se ¼ sf ðf� fcÞ
t ; (18)

where sf is the electrical conductivity of the conductive phase, f is
the volume fraction of the conductive phase, fc is the critical
volume fraction, and t is the conductivity exponent. It is postulated
in this theory that t depends only on the space dimensionality and
universality class of the problem. A universal value of t¼ 1.3 was
proposed for 2-D materials, and t¼ 2.0 was suggested for 3-D
materials [28,30]. In the current study, Eq. (18) together with t¼ 2.0
will be employed to calculate the electrical conductivity.

The effective electrical conductivity of the composite varying
with the fiber volume fraction is graphically shown in Figs. 15 and
16. The numerical values illustrated in Figs. 15 and 16 are calculated
using Eq. (18), with t¼ 2.0 and fc obtained in Section 3.4 for
a¼ 12.5 and 24 (see Fig. 13). It is seen from Figs. 15 and 16 that the
composite conductivity is reduced as g decreases (i.e., when the
fiber becomes more curved). The same trend is observed for fibers
with different aspect ratios, but the effect of g on se becomes less
significant when a becomes large, as seen from Fig. 16, where
a¼ 24 as opposed to a¼ 12.5 in Fig. 15. The effect of the fiber aspect
ratio on the composite conductivity is further illustrated in Fig. 17. It
is observed from Fig. 17 that the conductivity increases with a,
which is more significant when a is small. Furthermore, the
monotonic increase of the conductivity with the fiber volume
fraction is clearly displayed in all curves shown in Figs. 15–17, which
follows from the power-law relation in the percolation theory given
in Eq. (18).
4. Summary

A 3-D Monte Carlo model for predicting electrical conductivity
of polymer matrix composites filled with conductive curved fibers
is presented. The new model accounts for the fiber curliness effect
by using 3-D arm-shaped fibers, which are randomly distributed
and oriented and have three adjustable parameters (i.e., the fiber
arm length, the fiber aspect ratio, and the fiber arm angle). The
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Fig. 14. Critical fiber volume fraction varying with the fiber aspect ratio.



Fig. 16. Composite conductivity for fibers with different arm angles (with a¼ 24).

Fig. 17. Composite conductivity for fibers with different aspect ratios (with g¼ 90�).

Fig. 15. Composite conductivity for fibers with different arm angles (with a¼ 12.5).
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sample size and scaling effects are also considered in the current
model.

The use of the Monte Carlo method leads to the determination of
the percolation threshold, and the subsequent application of the
percolation theory results in the prediction of the effective elec-
trical conductivity of the composite.

The numerical results obtained using the newly developed
model show that the fiber curliness has a large effect on the
percolation behavior when the fiber aspect ratio is small: the less
curved the fiber, the smaller the percolation threshold. The lowest
value of the threshold is reached when the arm angle is 180� (i.e.,
straight fibers). However, this curliness effect becomes insignificant
when the fiber aspect ratio is large. The current simulation results
also reveal an exponential relationship between the aspect ratio
and the percolation threshold: the higher the fiber aspect ratio, the
lower the threshold. In addition, the effective electrical conduc-
tivity of the composite is found to decrease with the increase of the
fiber curliness and with the decrease of the fiber aspect ratio. These
newly obtained simulation results agree fairly well with experi-
mental and numerical data published earlier by others.
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Appendix A

Consider the ith and jth arm-shaped fibers in the system.
Suppose that the central point (vertex) of the jth fiber is coincided
with that of the ith fiber. Then it follows from Eqs. (8) and (9) that
the distance between the centers of the ends of the ith and jth
fibers, where t¼ L and s¼ L, respectively, is

d ¼ L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ C2

p
: (A.1)

Next, consider the triangle formed by one end of the ith fiber (with
t¼ L), one end of the jth fiber (with s¼ L) and the coincident central
point of the two fibers. The distance between the centers of the two
fiber ends, as the length of one side of the triangle, can be readily
obtained as

d ¼ 2L sin
b

2
; (A.2)

where b is the angle between the two equilateral sides of the
triangle, with 0� b�p. Clearly, b¼ 0 or p if the ith and jth arm-
shaped fibers are parallel to each other. A comparison of Eqs. (A.1)
and (A.2) then gives

C2 ¼ �2 cos2 b

2
: (A.3)

Therefore, C2
2 < 4 for any b s 0. That is, 4� C2

2 > 0 as long as the ith
and jth arm-shaped fibers are not parallel to each other. This has
proved the inequality used in Eq. (13b) for the case where the
vertices of the two fibers coincide.

For the ith and jth arm-shaped fibers whose central points are
separated by a distance do, the jth fiber can be moved by the
distance do to have its vertex coincident with that of the ith fiber

http://sc.tamu.edu/
http://sc.tamu.edu/
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without changing its orientation. As a result, the inequality proved
above also holds for this more general case.
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